Table of Contents
1 Problem
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
2 Solution
按题意暴力求解,但我们还是能在细节进行一些优化.
- 我们只寻找amicable pair numbers中小的数,但相加时把两者都加上.
- getDivisorSum的优化
- 直观的,循环只要到sqrt(n)就行,因为除数是对应的,n = a * b,由反证法易知一数小于等于sqrt(n),另一数大于等于sqrt(n);
- 我们考虑求质数,公式(
\ref{ref1}
),公式(
\ref{ref2}
)明显成立,公式(
\ref{ref3}
)左右两边展开相等可证
getDivisorSum(p1*p2*..p_n) = 1+ p1 + p2 + ... pn + p1p2 + .. + p(n-1)p(n) + ... + p1p2..pn = (1 + p1)(1 + p2)...(1 + pn) = getDivisorSum(p1) * getDivisorSum(p2) * ... * getDivisorSum(pn)
3 Answer
31626
Source:C++